Rabu, 08 Desember 2010

Konfigurasi Access Point SMC2655W


Program utility Access Point bawaan SMC akan secara automatis menscan jaringan dan mencari Access Point SMC di jaringan. Jika Access Point SMC telah di temukan maka akan di tampilkan MAC addesss Access Point dan nama-nya. “default” adalah login password yang di set oleh pabrik yang dapat digunakan untuk memasuki halaman konfigurasi Access Point.

Permasalahan pada jaringan komputer

Masalah Jaringan bisa menyebabkan gangguan pada aplikasi jaringan dan gangguan pada kesinambungan bisnis. Skala dari gangguan ini bisa bervariasi tergantung dari sumber gangguan dan dampak yang ditimbulkannya pada jaringan infrastructure anda. Masalah jaringan bisa menyebabkan downtime (hayo apa nich bahasanya…?) dan downtime ini bisa bervariasi tergantung seberapa bagus anda merencanakan contingensi planning. Manajemen yang bagus pada dokumentasi system jaringan anda dapat membantu anda meminimalkan downtime dan memudahkan anda dalam troubleshooting masalah jaringananda.
Ada banyak jenis masalah jaringan yang dapat menyebabkan gangguan pada sebuah komputer, gangguan jaringan local, sampai gangguan pada koneksi jaringan global bisnis dalam corporate anda.

Permasalahan pada jaringan komputer

Masalah Jaringan bisa menyebabkan gangguan pada aplikasi jaringan dan gangguan pada kesinambungan bisnis. Skala dari gangguan ini bisa bervariasi tergantung dari sumber gangguan dan dampak yang ditimbulkannya pada jaringan infrastructure anda. Masalah jaringan bisa menyebabkan downtime (hayo apa nich bahasanya…?) dan downtime ini bisa bervariasi tergantung seberapa bagus anda merencanakan contingensi planning. Manajemen yang bagus pada dokumentasi system jaringan anda dapat membantu anda meminimalkan downtime dan memudahkan anda dalam troubleshooting masalah jaringananda.
Ada banyak jenis masalah jaringan yang dapat menyebabkan gangguan pada sebuah komputer, gangguan jaringan local, sampai gangguan pada koneksi jaringan global bisnis dalam corporate anda.
Masalah jaringan karena kegagalan kabel jaringan
Yang ini merupakan masalah jaringan yang umum kita temui akibat putusnya kabel jaringanyang bisa mempengaruhi kinerja sebuah komputer dalam jaringan karena putusnya kabel patch anda karena digigit tikus; masalah jaringan yang berdampak pada satu blok gedung karena putusnya kabel antar switch (uplink cable); atau bahkan berdampak pada sebagian besar komputer dalam jaringan lan anda karena kegagalan backbone cable.
Masalah jaringan yang berdampak pada sebuah komputer saja mungkin bukan masalah besar kecuali itu komputer sang jendral or sang direktur anda. Tapi masalah jaringan yang berdampak pada jaringan lan anda secara keseluruhan atau bahkan berdampak secara global dalam bisinis corporate anda bisa membuat keringat dingin anda keluar deras. Dalam system infrastruktur jaringan yang berskala besar, system redundansi haruslah diterapkan. Sehingga kalau terjadi kegagalan dalam satu jalur jaringan tidak akan menyebabkan kegagalan jaringan dalam waktu yang lama. Dalam jaringan multi switch yang kompleks maka Spanning Tree Protocol (STP) haruslah di enable dan di tuning secara manual. STP adalah suatu service yang memungkinkan jaringan switch-2 dan bridge-2 LAN andaterkoneksi satu sama lain secara redundant dengan suatu mekanisme yang bisa mencegah bridging loops. Bridging loop itu paket data yang berputar-putar dalam jaringan nyari alamat sampai kecapekan dan akhirnya koid. Bridging loop ini bisa menyebabkan trafik jaringan anda macet atau disebut broadcast storm.
Masalah jaringan karena kegagalan piranti jaringan
Skala gangguan akibat dari kegagalan piranti jaringan juga bisa bervariasi, dari hanya sebuah komputer karena kegagalan NIC – lan card; beberapa komputer karena kegagalan switch; atau bahkan berskala luas karena kegagalan pada switch central yang menghubungkan jaringan server. Untuk kegagalan lan card di salah satu komputer bisa diganti dengan network card cadangan anda.
Terus bagaimana kalau kegagalan jaringan itu akibat kerusakan pada switch? Design anda mengenai redundansi jaringan akan sangat membantu dalam menyelamatkan kegagalan jaringan anda. Kebutuhan load balancing dan redundansi haruslah dikaji untuk setiap kebutuhan berdasarkan penggunaan link redundansi; piranti router; switch dan multi-homed host yang bersifat kritis. Tujuan dari system redundansi ini dimaksudkan untuk menjamin ketersediaan layanan dimana tidak ada satupun titik rawan kegagalan.

Mari kita perhatikan pada gambar diatas tentang system redundansi.
Redundansi switch; jika terjadi masalah dikarenakan kegagalan pada switch A, Switch B masih bisa berfungsi untuk mensuplay link kepada server dan juga ke dua distribusi switch dan link ke WAN. Jenis masalah jaringan ini tidak akan mempengarui system server down.
Redundansi router akan membuat backup link WAN saat terjadi masalah pada salah satu router. Misal salah satu router yang menghubungkan jaringan frame relay anda ke kantor lainnya, maka masih ada backup link di router satunya.
Redundansi link – akan membackup link jika ada masalah jaringan dengan terputusnya link ke server atau ke switch.
Kita bisa mengaplikasikan system redundansi ini pada model scenario sebelumnya yang menghubungkan kedua kantor Mining dan HRD dengan menarik dua kabel UTP Cat5e bawah tanah sebagai link redundansi. Pastikan bahwa kedua kabel redundansi ini tidak terhubung kepada switch yang sama, karena kalau terjadi kegagalan pada switch maka akan percuma juga.
Masalah jaringan karena kegagalan system
Walaupun kegagalan system bukanlah akibat dari kegagalan infrastruktur jaringan, tetap saja user anda akan menelpon anda dengan pertanyaan seperti berikut: “halo Agus…apa ada masalah jaringan? Saya tidak bisa mengakses email saya … atau saya tidak bisa akses internet …atau bahkan pertanyaan dari seorang operator radio “halo Agus …saya kok gak bisa akses foldernya Presdir yach …kenapa?”
Kegagalan system bisa saja karena ada masalah dengan DHCP server anda sehingga clients tidak menerima IP address. Atau bisa saja karena ada masalah dengan system Directory Services anda sehingga clients tidak bisa logon ke jaringan.Atau bisa saja karena ada masalah dengan register nama pada system DNS anda.
Masalah jaringan karena ledakan virus
Jenis ini juga merupakan masalah jaringan yang bukan karena kegagalan infrastruktur jaringan fisik, akan tetapi system jaringan anda akan kebanjiran traffic dari pengaruh virus yang menyerang system server dan menulari ke semua komputer dalam jaringan anda. Kinerja dari system jaringan anda akan menjadi sangat pelan sekali bahkan boleh dibilang ambruk. Apa yang bisa anda lakukan dengan serangan virus ini adalah menerapkan best practice security policy, pertahanan system anda harus kebal sekali.
Segala macam masalah jaringan, anda sebagai network dan system administrator haruslah bisa menyelesaikan masalah. Tidak perduli apakah masalah tersebut merupakan kegagalan piranti jaringan anda; atau masalah system komputer anda; ataupun intruder yang menyerang system infrastructure system anda. Suatu design jaringan redundansi yang bagus dan system manajemen yang bagus merupakan suatu keharusan dalam skala jaringan yang bersifat luas dan kompleks.


Kamis, 25 November 2010

IF bersarang dalam php

Pernyataan IF bisa berada dalam pernyataan IF. Kondisi seperti ini sering disebut sebagai IF bersarang atau nested IF. Contoh IF bersarang atau nested for dalam Java dapat kalian lihat pada contoh program dibawah ini.


import java.util.*;

public class NestedIF
{
public static void main(String[] args)
{
Scanner input = new Scanner(System.in);
int nilai;

System.out.print("Masukkan nilai ujian [ 0 - 100 ]: ");
nilai = input.nextInt();

if(nilai >=90 && nilai <=100)
System.out.println("Nilai ujian = A");
else if(nilai >=80 && nilai <=89)
System.out.println("Nilai ujian = B");
else if(nilai>=60 && nilai <=79)
System.out.println("Nilai ujian = C");
else if(nilai >= 50 && nilai <=59)
System.out.println("Nilai ujian = D");
else
System.out.println("Nilai ujian = E");
}
}

Struktur kontrol dalam PHP

Secara mendasar struktur program dapat memiliki kombinasi struktur kontrol :

Urutan (Sequence)

Pemilihan (Section)

Pengulangan (Interaction)

7.1. Struktur if

Struktur if merupakan struktur kontrol pemilihan yang digunakan untuk pemeriksaan. Apakah perintah-perintah didalam blok dikerjakan atau tidak. Perintah dalam blok if akan di kerjakan jika nilai dari ekspresi di dalam if bernilai benar (true).

Contoh struktur if :

1

if

Contoh Srtuktur Kontrol if


$a = 5;


$b= 7;


$a = 5;

$b = 7;

echo "\$a = $a
";

echo "\$b = $b
";

if ($a>$b){

echo "\$a > \$b";

}

if ($a<$b){

echo "\$a < \$b";

}

if ($b==$a){

echo "\$b = \$a";

}

?>

Simpan di C:\apache\htdocs coba7_1.php

7.2. Struktur else

Digunakan untuk memberikan alternative urutan perintah apabila ada proses yang memberikan dua alternative benar atau salah. else merupakan bagian seurutan perintah yang harus dikerjakan apabila hasil evaluasi dari ekspresi pada if bernilai salah.

if

Contoh Srtuktur Kontrol if dan else


$a = 5;


$b = 7;


Hitung selisih


$a = 7;


$b = 5;


Hitung selisih


$b=7;

echo "\$a = $a
";

echo"\$b = $b
";

if ($a>$b)

{

$selisih=$b-$a;

echo "Selisih \$a > \$b adalah $selisih "."
";

} if ($a<$b)

{

$selisih=$b-$a;

echo "\$b < \$a adalah $selisih"."
";

}

if ($b==$a)

{

echo "\$b = \$a"."
";

} $a=5;

$b=7;

echo "\$a = $a
";

echo"\$b = $b
";

if ($a>$b){

$selisih=$a-$b;

echo "Selisih \$a > \$b adalah $selisih "."
";

}

if ($a<$b)

{

$selisih=$b-$a;

echo "\$a < \$b adalah $selisih "."
";

}

if ($b==$a)

{

echo "\$b = \$a"."
";

}

?>

Simpan di C:\apache\htdocs coba7_2.php

7.3. Struktur else if

Nilai suatu ekspresi bisa jadi bukan dua nilai benar atau salah, tetapi bisa banyak nilai. Struktur if...elseif menyederhanakan model struktur kontrol if...else.

Demo elseif

$bil=28;

if ($bil>0)

{

echo $bil." Adalah positif";

}

else if ($bil<0)

{

echo $bil." Adalah negatif";

}

Else

{

echo $bil." Adalah nol";

}

?>

Kemudian simpan dengan nama coba7_3.php

7.4. Struktur break

Merupakan perintah yang digunakan untuk keluar pada suatu blok. Jika tidak diberikan break pada case maka akan dianggap benar dan dieksekusi.

Demo switch

$nohari=2;

echo "No. hari : $nohari adalah hari :";

switch ($nohari) {

case 1:

echo "minggu";

break;

case 2:

echo "senin";

break;

case 3:

echo "selasa";

break;

case 4:

echo "rabu";

break;

case 5:

echo "kamis";

break;

case 6:

echo "jumat";

break;

case 7:

echo "sabtu";

break;

}

?>

Kemudian simpan dengan nama coba7_4.php

7.5. Struktur switch

Merupakan bentuk struktur kontrol yang lebih sederhana dari pada if...else. Ataupun bentuk elseif. Kontrol switch digunakan untuk mengevaluasi suatu ekspresi dengan kemungkinan banyak nilai dan banyak perintah yang harus dieksekusi berdasarkan ekspresi dan nilainya.

Demo switch

$nohari=2;

echo "No. hari : $nohari adalah hari :";

switch ($nohari){

case 1:

echo "minggu";

case 2:

echo "senin";

case 3:

echo "selasa";

case 4:

echo "rabu";

case 5:

echo "kamis";

case 6:

echo "jumat";

case 7:

echo "sabtu";

}

?>

Kemudian simpan dengan nama coba7_5.php

7.6. Struktur while

Bentuk perulangan . struktur kontrol ini merupakan seurutan perintah yang dieksekusi berulang-ulang. jumlah perulangan yang harus dilakukan, harus ditentukan oleh suatu nilai ekspresi.

Demo while

$bil =3;

while ($bil<10)>

echo "$bil";

echo " ";

$bil=$bil+3;

}

?>

Kemudian simpan dengan nama coba7_6.php

7.7. Struktur do while

Membuat satu blok perintah didalamnya untuk diulang-ulang perintah eksekusi perintahnya. Perbedaan dengan do...while pemeriksaan ekspresi dilakukan pada bagian akhir dari blok perulangan. Perintah dalam blok akan dikerjakan selama kondsinya masih benar.

Demo do while

$bil =3;

do {

echo "$bil";

echo " ";

$bil=$bil+3;

} while ($bil<10)

?>

Kemudian simpan dengan nama coba7_7.php

7.8. Struktur for

Merupakan struktur kontrol perulangan dengan jumlah perulangan dapat ditentukan beberapa kali. Harus dilakukan perulangan dengan menggunakan bilangan sebagai penghitung.

function pegawai_caboelz()

{

$argumen = func_get_args();

return $argumen;

}

$nama_pegawai = pegawai_caboelz("Yayat", "Amien", "Dwi", "Anggah");

?>

Berikut ini adalah nama-nama Pegawai CaboelzZz.Inc:

    for ($i=0; $i <>

    {

    echo "

  • " . $nama_pegawai[$i] . "\n";

    }

    ?>

Kemudian simpan dengan nama coba7_8.php

7.9. foreach

Merupakan struktur control khusus yang digunakan untuk melakukan pengulangan pada array. Dengan cara ini kita tidak perlu mengetahui berapa jumlah array untuk mengetahui berapa kali harus melakukan pengulangan.

Demo for...

$nama[1]="Rudi";

$nama[2]="Aziz";

foreach($nama as $value)

{

echo "Nama Pegawai CaboelzZz.Inc $value";

echo "
";

}

?>

Selasa, 02 November 2010

Kabel Jaringan



Kabel UTP dan STP

Kabel Twisted pair (pasangan berpilin) adalah sebuah bentuk kabel di mana dua konduktor digabungkan dengan tujuan untuk mengurangi atau meniadakan interferensi elektromagnetik dari luar seperti radiasi elektromagnetik dari kabel unshielded twisted pair (UTP) cables, dan crosstalk di antara pasangan kabel yang berdekatan.

Unshielded twisted-pair

Unshielded twisted-pair (disingkat UTP) adalah sebuah jenis kabel jaringan yang menggunakan bahan dasar tembaga, yang tidak dilengkapi dengan shield internal. UTP merupakan jenis kabel yang paling umum yang sering digunakan di dalam jaringan lokal (LAN), karena memang harganya yang rendah, fleksibel dan kinerja yang ditunjukkannya relatif bagus. Dalam kabel UTP, terdapat insulasi satu lapis yang melindungi kabel dari ketegangan fisik atau kerusakan tapi, tidak seperti kabel Shielded Twisted-pair (STP), insulasi tersebut tidak melindungi kabel dari interferensi elektromagnetik.

Kabel UTP memiliki impendansi kira-kira 100 Ohm dan tersedia dalam beberapa kategori yang ditentukan dari kemampuan transmisi data yang dimilikinya seperti tertulis dalam tabel berikut.

Kategori

Kegunaan

Category 1 (Cat1)

Kualitas suara analog

Category 2 (Cat2)

Transmisi suara digital hingga 4 megabit per detik

Category 3 (Cat3)

Transmisi data digital hingga 10 megabit per detik

Category 4 (Cat4)

Transmisi data digital hingga 16 megabit per detik

Category 5 (Cat5)

Transmisi data digital hingga 100 megabit per detik

Enhanced Category 5 (Cat5e)

Transmisi data digital hingga 250 megabit per detik

Category 6 (Cat6)


Category 7 (Cat7)


Di antara semua kabel di atas, kabel Enhanced Category 5 (Cat5e) dan Category 5 (Cat5) merupakan kabel UTP yang paling populer yang banyak digunakan dalam jaringan berbasis teknologi Ethernet.

Kategori 1

Kabel UTP Category 1 (Cat1) adalah kabel UTP dengan kualitas transmisi terendah, yang didesain untuk mendukung komunikasi suara analog saja. Kabel Cat1 digunakan sebelum tahun 1983 untuk menghubungkan telepon analog Plain Old Telephone Service (POTS). Karakteristik kelistrikan dari kabel Cat1 membuatnya kurang sesuai untuk digunakan sebagai kabel untuk mentransmisikan data digital di dalam jaringan komputer, dan karena itulah tidak pernah digunakan untuk tujuan tersebut.

Kategori 2

Kabel UTP Category 2 (Cat2) adalah kabel UTP dengan kualitas transmisi yang lebih baik dibandingkan dengan kabel UTP Category 1 (Cat1), yang didesain untuk mendukung komunikasi data dan suara digital. Kabel ini dapat mentransmisikan data hingga 4 megabit per detik. Seringnya, kabel ini digunakan untuk menghubungkan node-node dalam jaringan dengan teknologi Token Ring dari IBM. Karakteristik kelistrikan dari kabel Cat2 kurang cocok jika digunakan sebagai kabel jaringan masa kini. Gunakanlah kabel yang memiliki kinerja tinggi seperti Category 3, Category 4, atau Category 5.

Category 3

Kabel UTP Category 3 (Cat3) adalah kabel UTP dengan kualitas transmisi yang lebih baik dibandingkan dengan kabel UTP Category 2 (Cat2), yang didesain untuk mendukung komunikasi data dan suara pada kecepatan hingga 10 megabit per detik. Kabel UTP Cat3 menggunakan kawat-kawat tembaga 24-gauge dalam konfigurasi 4 pasang kawat yang dipilin (twisted-pair) yang dilindungi oleh insulasi. Cat3 merupakan kabel yang memiliki kemampuan terendah (jika dilihat dari perkembangan teknologi Ethernet), karena memang hanya mendukung jaringan 10BaseT saja. Seringnya, kabel jenis ini digunakan oleh jaringan IBM Token Ring yang berkecepatan 4 megabit per detik, sebagai pengganti Cat2.

Tabel berikut menyebutkan beberapa karakteristik yang dimiliki oleh kabel UTP Category 3 pada beberapa frekuensi.

Karakteristik

Nilai pada frekuensi 10 MHz

Nilai pada frekuensi 16 MHz

Attenuation (pelemahan sinyal)

27 dB/1000 kaki

36 dB/1000 kaki

Near-end Cross-Talk (NEXT)

26 dB/1000 kaki

23 dB/1000 kaki

Resistansi

28.6 Ohm/1000 kaki

28.6 Ohm/1000 kaki

Impendansi

100 Ohm (±15%)

100 Ohm (±15%)

Kapasitansi

18 picoFarad/kaki

18 picoFarad/kaki

Category 4

Kabel UTP Category 4 (Cat4) adalah kabel UTP dengan kualitas transmisi yang lebih baik dibandingkan dengan kabel UTP Category 3 (Cat3), yang didesain untuk mendukung komunikasi data dan suara hingga kecepatan 16 megabit per detik. Kabel ini menggunakan kawat tembaga 22-gauge atau 24-gauge dalam konfigurasi empat pasang kawat yang dipilin (twisted pair) yang dilindungi oleh insulasi. Kabel ini dapat mendukung jaringan Ethernet 10BaseT, tapi seringnya digunakan pada jaringan IBM Token Ring 16 megabit per detik.

Tabel berikut menyebutkan beberapa karakteristik yang dimiliki oleh kabel UTP Category 4 pada beberapa frekuensi.

Karakteristik

Nilai pada frekuensi 10 MHz

Nilai pada frekuensi 20 MHz

Attenuation

20 dB/1000 kaki

31 dB/1000 kaki

Near-end Cross-Talk

41 dB/1000 kaki

36 dB/1000 kaki

Resistansi

28.6 Ohm/1000 kaki

28.6 Ohm/1000 kaki

Impedansi

100 Ohm (±15%)

100 Ohm (±15%)

Kapasitansi

18 picoFarad/kaki

18 picoFarad/kaki

Category 5

Kabel UTP Category 5 (Cat5) adalah kabel dengan kualitas transmisi yang jauh lebih baik dibandingkan dengan kabel UTP Category 4 (Cat4), yang didesain untuk mendukung komunikasi data serta suara pada kecepatan hingga 100 megabit per detik. Kabel ini menggunakan kawat tembaga dalam konfigurasi empat pasang kawat yang dipilin (twisted pair) yang dilindungi oleh insulasi. Kabel ini telah distandardisasi oleh Electronic Industries Alliance (EIA) dan Telecommunication Industry Association (TIA).

Kabel Cat5 dapat mendukung jaringan Ethernet (10BaseT), Fast Ethernet (100BaseT), hingga Gigabit Etheret (1000BaseT). Kabel ini adalah kabel paling populer, mengingat kabel Fiber optik yang lebih baik harganya hampir dua kali lipat lebih mahal dibandingkan dengan kabel Cat5. Karena memiliki karakteristik kelistrikan yang lebih baik, kabel Cat5 adalah kabel yang disarankan untuk semua instalasi jaringan.

Karakteristik

Nilai pada frekuensi 10 MHz

Nilai pada frekuensi 100 MHz

Attenuation

20 dB/1000 kaki

22 dB/1000 kaki

Near-end Cross-talk

47 dB/1000 kaki

32.3 dB/1000 kaki

Resistansi

28.6 Ohm/1000 kaki

28.6 Ohm/1000 kaki

Impendansi

100 Ohm (±15%)

100 Ohm (±15%)

Kapasitansi

18 picoFarad/kaki

18 picoFarad/kaki

Structural return loss

16 dB

16 dB

Delay skew

45 nanodetik/100 meter

45 nanodetik/100 meter

Enhanced Category 5

Kabel ini merupakan versi perbaikan dari kabel UTP Cat5, yang menawarkan kemampuan yang lebih baik dibandingkan dengan Cat5 biasa. Kabel ini mampu mendukung frekuensi hingga 250 MHz, yang direkomendasikan untuk penggunaan dalam jaringan Gigabit Ethernet, meskipun menggunaan kabel UTP Category 6 lebih disarankan untuk mencapai kinerja tertinggi.

Pengabelan UTP Category 5 Crossover

Dalam menghubungkan jaringan Ethernet dengan menggunakan kabel UTP Category 5, terdapat dua strategi pengabelan, yakni Crossover cable dan Straight-through cable. Kabel Crossover digunakan untuk menghubungkan dua perangkat yang sama (NIC dengan NIC lainnya, hub dengan hub yang lainnya dan lain-lain), sementara kabel Straight-through digunakan untuk menghubungkan NIC dengan hub atau NIC dengan switch.

Shielded twisted pair (STP atau STP-A)

Shielded twisted pair atau STP adalah kabel pasangan berpilin yang memiliki perlindungan dari logam untuk melindungi kabel dari intereferensi elektromagnetik luar.



Kabel Coaxal

Kabel Coaxial adalah media penyalur atau transmitor yang bertugas menyalurkan setiap informasi yang telah diubah menjadi sinyalsinyal listrik. Kabel ini memiliki kemampuan yang besar dalam menyalurkan bidang frekuensi yang lebar, sehingga sanggup mentransmisi kelompok kanal frekuensi percakapan atau program televisi. Kabel Coaxial biasanya digunakan untuk saluran interlokal yang berjarak relatif dekat yakni dengan jarak maksimum 2.000 km.

Sejarah

Kabel Coaxial berkembang pada tahun 1920 sebagai kelanjutan dari penemuan bentuk saluran dengan jumlah dua kawat yang sudah digunakan pada periode jauh sebelumnya. Kemudian pada tahun 1941, jaringan kabel Coaxial buatan laboratorium Bell jenis L1 digunakan untuk menghubungkan antar wilayah perkotaan di daerah Amerika bagian Timur. Lalu ketika televisi menjadi suatu teknologi yang populer, kabel Coaxial ternyata terbukti dapat juga digunakan sebagai penyalur isi informasi siaran. Tahun - tahun berikutnya laboratorium Bell terus melakukan pengembangan peralatan multipeks dan repeater ( penunjang ) untuk transmisi yang lebih efisien. Tahun 1953, sistem L1 kemudian dioperasikan dengan kemampuan yang lebih besar daripada L1, yakni dalam angka 1860 kanal. Pada akhir tahun 1960-an, kabel Coaxial mampu berpartisipasi dalam sistem mikrowave dimana keberadaan kabel Coaxial dapat menekan adanya biaya konstruksi dan pemeliharaan.

Konstruksi

  • Konduktor utama

Konduktor kabel harus terbuat dari bahan tembaga padat berbentuk silindris tanpa cacat berkonduktivitas tinggi. Untuk diameter dari kabel tidak diperbolehkan melebihi 0,02 mm dan 1,53 mm. Sedangkan untuk tahanan dari konduktor yang letaknya di dalam ( inner conductor) adalah 1/58 per 1 meter.

  • Isolasi

Isolasi kabel terbuat dari bahan polietilena homogen dan melingkari pada konduktor utama. Untuk diameter nominalnya yakni 0,97 mm dan juga tidak diperbolehkan melebihi 0,05 mm.

  • Konduktor bagian luar

Konduktor terbuat dari pita tembaga yang memiliki tebal 0,25 mm dengan maksimum toleransi 0,2 mm pada posisi memanjang dan sedikit tumpang tindih. Untuk tahanannya adalah sebesar 1/52 per meter. Pada bagian atas pita tembaga ini dibalut secara helikod dengan dua lapis pita baja yang memiliki tebal 0,15 mm yang digunakan sebagai pelindung elektromagnetik.

  • Penggantung

Penggantung di sini terdiri dari tujuh bual lilit kawat baja dengan ukuran 2 mm dan dengan daya kuat tarik sebesar 3,010 kgf.

  • Pembungkus luar

Pembungkus luar kabel terbuat dari polietilena yang dicampur dengan karbon hitam sebanyak 2%. Untuk tebal rata – rata pembungkus tidak diperbolehkan melebihi dari 2 mm dan juga tidak boleh kurang dari 1,6 mm. Sementara untuk tebal dari bagian antara penggantung dengan kabel adalah 3,4 mm dan dengan tinggi 3 – 4,5 mm.

Sifat-sifat elektris

Pada dasarnya kabel Coaxial memakai kawat tunggal yang menggelantung di tengah konduktoryang berbentuk silindris. Kawat tersebut berada pada tengah tabung atau pipa yang kemudian di antara kabel – kabel tersebut disisipi semacam bahan isolator piringan. Kabel ini memiliki faktor redaman yang sangat kecil dengan pelindung yang juga sangat ketat akan kemungkinan interfensi dan gangguan radiasi.


Walupun saluran – saluran Coaxial yang memiliki sekat pada sekelilingnya mempunyai kerugian arus yang lebih kecil dibandingkan saluran dielektris yang pejal, akan tetapi pembuatannya ternyata lebih sulit karena adanya problem mekanisme penyimpan konduktor yang berbentuk bulat. Saluran Coaxial yang disertai dengan penyekat dalam jarak yang mendekati keadaan ideal memiliki udara sebagai dielektris atau sering disebut kabel berdielektris udara.


Di dalam kabel pelindung pipa – pipa Coaxial ini yakni kawatkawat bercelah dengan suatu inti yang berbentuk silindris terdapat pasangan kawatkawat yang digunakan sebagai cadangan dalam perbaikan. Kawatkawat tersebut semuanya berbentuk bulat dan tepat di sekitarnya terdapat lapisan penyekat yang tebal dan juga pelindung yang terbuat dari timah hitam. Kawatkawat bercelah ini dapat dipakai secara khusus sebagai penghubung antar stasiun ( order wire ) repeater yang bertugas dan juga untuk memantau pula mengawasi stasiun yang tidak berawak ( unantended ). Apabila diperlukan untuk perbaikan ( service ), maka kawatkawat service pair dapat digunakan sebagai sirkuit atau fasilitas kabel multipleks.

Penyambungan

Kabel Coaxial seringkali membutuhkan adanya proses penyambungan agar proses penyaluran menjadi lebih baik. Konduktor dalam kabel terbuat dari tembaga dengan diameter 5 mm serta dibungkus dengan osilasi polietilena dengan diameter 10 mm disusul pada konduktor luar yang berbentuk pita tembaga dengan tebal 2 mm. Kemudian dalam kabel Coaxial udara biasanya terdapat kawat yang terbuat dari baja dengan kabel konduktornya yang membentuk huruf S. Dalam penyambungan kabel Coaxial, beberapa hal yang perlu diperhatikan adalah :

  • Kontinuitas konduktor utama kabel dalam kondisi yang terpelihara oleh keberadaan selongsong ( cincin berulir )
  • Semua dielektrik polietilena terbentuk dengan adanya sistem injeksi ( mencetak )
  • Konduktor luar pada kabel digantikan oleh sebuah jalinan tembaga
  • Pembungkus bagian luar polietilena digantikan oleh lapisan yang mudah mengerut akibat kondisi yang panas
  • Kontinuitas dari kabel penggantung tetap terpelihara oleh keberadaan konektorkonektor khusus
  • Sambungan daripada kabel harus sedemikian rupa sehingga kabel tetap bersifat homogen seperti pada kondisi yang semula
  • Redaman sedapat mungkin tetap pada angka nol atau sekecil – kecilnya
  • Hasil dari pekerjaan sambungan kabel tersebut haruslah rapi

Keunggulan

Kabel jenis ini mempunyai kemampuan dalam menyalurkan sinyal – sinyal listrik yang lebih besar dibandingkan saluran transmisi dari kawat biasa. Selain itu kabel Coaxial memiliki ketahanan arus yang semakin kecil pada frekuensi yang lebih tinggi. Perambatan energi elektromagnetiknya dibatasi dalam pipa dan juga sekat dari pengaruh interfensi atau gangguan percakapan silang luar karena bentuknya yang sedemikan rupa. Pada perkembangannya, pemakaian pesawat telepon yang semakin meningkat menyebabkan adanya keterbatasan penampungan spektrum yang tersedia pada mikrowave. Hal ini berdampak pada peningkatan penggunaan kabel Coaxial sebagai penunjang jalur mikrowave pada jarak yang pendek.

Kelemahan

Walaupun kabel Coaxial pada dasarnya memiliki tingkat keandalan yang tinggi dalam proses transmisi, dari sisi ekonomi, sistem penyaluran informasi menggunakan kabel ini memiliki kelemahan yakni dalam hal investasi dan biaya pemeliharaan yang mahal. Lebar bidang frekuensi dalam kabel Coaxial hanya terbatas oleh gain ( pengerasan ) yang dikehendaki, yang diperlukan untuk mempertahankan mutu sinyal yang baik. Dalam suatu jarak tertentu, transmisi sinyal – sinyal elektromagnetik harus diangkat dengan serangkaian repeater yang terbuat dari tabung elektron pada jalur tersebut agar penyampaian komunikasi terjalin lebih baik. Satu kelemahan yang juga melanda kabel Coaxial yakni adanya pengaruh yang besar dari variasi temperatur. Hal ini dapat berpengaruh pada mutu dan kualitas dari sistem Coaxial tersebut. Masalah kemudian ini ditanggulangi dengan adanya penanaman kabel di dalam tanah dan juga mengandalkan bantuan repeater yang bertugas sebagai penyeimbang tambahan terhadap perubahan variasi temperatur yang terjadi dalam kabel.



Kabel Fiber Optik

Fiber optik adalah merupakan saluran transmisi atau sejenis kabel yang terbuat dari kaca atau plastik yang sangat halus dan lebih kecil dari sehelai rambut, dan dapat digunakan untuk mentransmisikan sinyal cahaya dari suatu tempat ke tempat lain. Sumber cahaya yang digunakan biasanya adalah laser atau LED[1]. Kabel ini berdiameter lebih kurang 120 mikrometer. Cahaya yang ada di dalam Fiber optik tidak keluar karena indeks bias dari kaca lebih besar daripada indeks bias dari udara, karena laser mempunyai spektrum yang sangat sempit. Kecepatan transmisi Fiber optik sangat tinggi sehingga sangat bagus digunakan sebagai saluran komunikasi.

Perkembangan teknologi Fiber optik saat ini, telah dapat menghasilkan pelemahan (attenuation) kurang dari 20 decibels (dB)/km. Dengan lebar jalur (bandwidth) yang besar sehingga kemampuan dalam mentransmisikan data menjadi lebih banyak dan cepat dibandingan dengan penggunaan kabel konvensional. Dengan demikian Fiber optik sangat cocok digunakan terutama dalam aplikasi sistem telekomunikasi[2]. Pada prinsipnya Fiber optik memantulkan dan membiaskan sejumlah cahaya yang merambat didalamnya.

Efisiensi dari Fiber optik ditentukan oleh kemurnian dari bahan penyusun gelas/kaca. Semakin murni bahan gelas, semakin sedikit cahaya yang diserap oleh Fiber optik.

Sejarah

Penggunaan cahaya sebagai pembawa informasi sebenarnya sudah banyak digunakan sejak zaman dahulu, baru sekitar tahun 1930-an para ilmuwan Jerman mengawali eksperimen untuk mentransmisikan cahaya melalui bahan yang bernama Fiber optik. Percobaan ini juga masih tergolong cukup primitif karena hasil yang dicapai tidak bisa langsung dimanfaatkan, namun harus melalui perkembangan dan penyempurnaan lebih lanjut lagi. Perkembangan selanjutnya adalah ketika para ilmuawan Inggris pada tahun 1958 mengusulkan prototipe Fiber optik yang sampai sekarang dipakai yaitu yang terdiri atas gelas inti yang dibungkus oleh gelas lainnya. Sekitar awal tahun 1960-an perubahan fantastis terjadi di Asia yaitu ketika para ilmuwan Jepang berhasil membuat jenis Fiber optik yang mampu mentransmisikan gambar.

Di lain pihak para ilmuwan selain mencoba untuk memandu cahaya melewati gelas (Fiber optik) namun juga mencoba untuk ”menjinakkan” cahaya. Kerja keras itupun berhasil ketika sekitar 1959 laser ditemukan. Laser beroperasi pada daerah frekuensi tampak sekitar 1014 Hertz-15 Hertz atau ratusan ribu kali frekuensi gelombang mikro.

Pada awalnya peralatan penghasil sinar laser masih serba besar dan merepotkan. Selain tidak efisien, ia baru dapat berfungsi pada suhu sangat rendah. Laser juga belum terpancar lurus. Pada kondisi cahaya sangat cerah pun, pancarannya gampang meliuk-liuk mengikuti kepadatan atmosfer. Waktu itu, sebuah pancaran laser dalam jarak 1 km, bisa tiba di tujuan akhir pada banyak titik dengan simpangan jarak hingga hitungan meter.

Sekitar tahun 60-an ditemukan Fiber optik yang kemurniannya sangat tinggi, kurang dari 1 bagian dalam sejuta. Dalam bahasa sehari-hari artinya Fiber yang sangat bening dan tidak menghantar listrik ini sedemikian murninya, sehingga konon, seandainya air laut itu semurni Fiber optik, dengan pencahayaan cukup mata normal akan dapat menonton lalu-lalangnya penghuni dasar Samudera Pasifik.

Seperti halnya laser, Fiber optik pun harus melalui tahap-tahap pengembangan awal. Sebagaimana medium transmisi cahaya, ia sangat tidak efisien. Hingga tahun 1968 atau berselang dua tahun setelah Fiber optik pertama kali diramalkan akan menjadi pemandu cahaya, tingkat atenuasi (kehilangan)-nya masih 20 dB/km. Melalui pengembangan dalam teknologi material, Fiber optik mengalami pemurnian, dehidran dan lain-lain. Secara perlahan tapi pasti atenuasinya mencapai tingkat di bawah 1 dB/km.

Kronologi Perkembangan Fiber Optik

  • 1917 Albert Einstein memperkenalkan teori pancaran terstimulasi dimana jika ada atom dalam tingkatan energi tinggi
  • 1954 Charles Townes, James Gordon, dan Herbert Zeiger dari Universitas Columbia USA, mengembangkan maser yaitu penguat gelombang mikro dengan pancaran terstimulasi, dimana molekul dari gasamonia memperkuat dan menghasilkan gelombang elektromagnetik. Pekerjaan ini menghabiskan waktu tiga tahun sejak ide Townes pada tahun 1951 untuk mengambil manfaat dari osilasi frekuensi tinggi molekular untuk membangkitkan gelombang dengan panjang gelombang pendek pada gelombang radio.
  • 1958 Charles Townes dan ahli fisika Arthur Schawlow mempublikasikan penelitiannya yang menunjukan bahwa maser dapat dibuat untuk dioperasikan pada daerah infra merah dan spektrum tampak, dan menjelaskan tentang konsep laser.
  • 1960 Laboratorium Riset Bell dan Ali Javan serta koleganya William Bennett, Jr., dan Donald Herriott menemukan sebuah pengoperasian secara berkesinambungan dari laser helium-neon.
  • 1960 Theodore Maiman, seorang fisikawan dan insinyur elektro dari Hughes Research Laboratories, menemukan sumber laser dengan menggunakan sebuah kristal batu rubi sintesis sebagai medium.
  • 1961 Peneliti industri Elias Snitzer dan Will Hicks mendemontrasikan sinar laser yang diarahkan melalui Fiber gelas yang tipis(Fiber optik). Inti Fiber gelas tersebut cukup kecil yang membuat cahaya hanya dapat melewati satu bagian saja tetapi banyak ilmuwan menyatakan bahwa Fiber tidak cocok untuk komunikasi karena rugi rugi cahaya yang terjadi karena melewati jarak yang sangat jauh.
  • 1961 Penggunaan laser yang dihasilkan dari batu Rubi untuk keperluan medis di Charles Campbell of the Institute of Ophthalmology at Columbia-Presbyterian Medical Center dan Charles Koester of the American Optical Corporation menggunakan prototipe ruby laser photocoagulator untuk menghancurkan tumor pada retina pasien.
  • 1962 Tiga group riset terkenal yaitu General Electric, IBM, dan MIT’s Lincoln Laboratory secara simultan mengembangkan gallium arsenide laser yang mengkonversikan energi listrk secara langsung ke dalam cahaya infra merah dan perkembangan selanjutnya digunakan untuk pengembangan CD dan DVD player serta penggunaan pencetak laser.
  • 1963 Ahli fisika Herbert Kroemer mengajukan ide yaitu heterostructures, kombinasi dari lebih dari satu semikonduktor dalam layer-layer untuk mengurangi kebutuhan energi untuk laser dan membantu untuk dapat bekerja lebih efisien. Heterostructures ini nantinya akan digunakan pada telepon seluler dan peralatan elektronik lainnya.
  • 1966 Charles Kao dan George Hockham yang melakukan penelitian di Standard Telecommunications Laboratories Inggris mempublikasikan penelitiannya tentang kemampuan Fiber optik dalam mentransmisikan sinar laser yang sangat sedikit rugi-ruginya dengan menggunakan Fiber kaca yang sangat murni. Dari penemuan ini, kemudian para peneliti lebih fokus pada bagaimana cara memurnikan bahan Fiber kaca tersebut.
  • 1970 Ilmuwan Corning Glass Works yaitu Donald Keck, Peter Schultz, dan Robert Maurer melaporkan penemuan Fiber optik yang memenuhi standar yang telah ditentukan oleh Kao dan Hockham. Gelas yang paling murni yang dibuat terdiri atas gabungan silika dalam tahap uap dan mampu mengurangi rugi-rugi cahaya kurang dari 20 decibels per kilometer, yang selanjutnya pada 1972, tim ini menemukan gelas dengan rugi-rugi cahaya hanya 4 decibels per kilometer. Dan juga pada tahun 1970, Morton Panish dan Izuo Hayashi dari Bell Laboratories dengan tim Ioffe Physical Institute dari Leningrad, mendemontrasikan laser semikonduktor yang dapat dioperasikan pada temperatur ruang. Kedua penemuan tersebut merupakan terobosan dalam komersialisasi penggunaan fiber optik.
  • 1973 John MacChesney dan Paul O. Connor pada Bell Laboratories mengembangkan proses pengendapan uap kimia ke bentuk ultratransparent glass yang kemudian menghasilkan Fiber optik yang mempunyai rugi-rugi sangat kecil dan diproduksi secara masal.

http://upload.wikimedia.org/wikipedia/commons/thumb/b/ba/OF-MCVD.svg/300px-OF-MCVD.svg.png

http://bits.wikimedia.org/skins-1.5/common/images/magnify-clip.png

Proses pengendapan uap kimia untuk memodifikasi Fiber optik

  • 1975 Insinyur pada Laser Diode Labs mengembangkan Laser Semikonduktor, laser komersial pertama yang dapat dioperasikan pada suhu kamar.
  • 1977 Perusahaan telepon memulai penggunaan Fiber optik yang membawa lalu lintas telepon. GTE membuka jalur antara Long Beach dan Artesia, California, yang menggunakan transmisi LED. Bell Labs mendirikan sambungan yang sama pada sistem telepon di Chicago dengan jarak 1,5 mil di bawah tanah yang menghubungkan 2 switching station.
  • 1980 Industri Fiber optik benar-benar sudah berkibar, sambungan Fiber optik telah ada di kota kota besar di Amerika, AT&T mengumumkan akan menginstal jaringan Fiber optik yang menghubungkan kota kota antara Boston dan Washington D.C., kemudian dua tahun kemudian MCI mengumumkan untuk melakukan hal yang sama. Raksasa-raksasa elektronik macam ITT atau STL mulai memainkan peranan dalam mendalami riset-riset Fiber optik.
  • 1987 David Payne dari Universitas Southampton memperkenalkan optical amplifiers yang dikotori (dopped) oleh elemen erbium, yang mampu menaikan sinyal cahaya tanpa harus mengkonversikan terlebih dahulu ke dalam energi listrik.
  • 1988 Kabel Translantic yang pertama menggunakan Fiber kaca yang sangat transparan, dan hanya memerlukan repeater untuk setiap 40 mil.
  • 1991 Emmanuel Desurvire dari Bell Laboratories serta David Payne dan P. J. Mears dari Universitas Southampton mendemontrasikan optical amplifiers yang terintegrasi dengan kabel Fiber optik tersebut. Dengan keuntungannya adalah dapat membawa informasi 100 kali lebih cepat dari pada kabel dengan penguat elektronik (electronic amplifier).
  • 1996 TPC-5 merupakan jenis kabel Fiber optik yang pertama menggunakan penguat optik. Kabel ini melewati samudera pasifik mulai dari San Luis Obispo, California, ke Guam, Hawaii, dan Miyazaki, Jepang, dan kembali ke Oregon coast dan mampu untuk menangani 320,000 panggilan telepon.
  • 1997 Fiber optik menghubungkan seluruh dunia, Link Around the Globe (FLAG) menjadi jaringan kabel terpanjang di seluruh dunia yang menyediakan infrastruktur untuk generasi internet terbaru.

Sistem Komunikasi Fiber Optik (SKSO)

Berdasarkan penggunaannya maka SKSO dibagi atas beberapa generasi yaitu :

Generasi pertama (mulai 1975)

Sistem masih sederhana dan menjadi dasar bagi sistem generasi berikutnya, terdiri dari : alat encoding : mengubah input (misal suara) menjadi sinyal listrik transmitter : mengubah sinyal listrik menjadi sinyal gelombang, berupa LED dengan panjang gelombang 0,87 mm. Fiber silika : sebagai penghantar sinyal gelombang repeater : sebagai penguat gelombang yang melemah di perjalanan receiver : mengubah sinyal gelombang menjadi sinyal listrik, berupa fotodetektor alat decoding : mengubah sinyal listrik menjadi output (misal suara) Repeater bekerja melalui beberapa tahap, mula-mula ia mengubah sinyal gelombang yang sudah melemah menjadi sinyal listrik, kemudian diperkuat dan diubah kembali menjadi sinyal gelombang. Generasi pertama ini pada tahun 1978 dapat mencapai kapasitas transmisi sebesar 10 Gb.km/s.

Generasi kedua (mulai 1981)

Untuk mengurangi efek dispersi, ukuran teras Fiber diperkecil agar menjadi tipe mode tunggal. Indeks bias kulit dibuat sedekat-dekatnya dengan indeks bias teras. Dengan sendirinya transmitter juga diganti dengan diode laser, panjang gelombang yang dipancarkannya 1,3 mm. Dengan modifikasi ini generasi kedua mampu mencapai kapasitas transmisi 100 Gb.km/s, 10 kali lipat lebih besar daripada generasi pertama.

Generasi ketiga (mulai 1982)

Terjadi penyempurnaan pembuatan Fiber silika dan pembuatan chip diode laser berpanjang gelombang 1,55 mm. Kemurnian bahan silika ditingkatkan sehingga transparansinya dapat dibuat untuk panjang gelombang sekitar 1,2 mm sampai 1,6 mm. Penyempurnaan ini meningkatkan kapasitas transmisi menjadi beberapa ratus Gb.km/s.

Generasi keempat (mulai 1984)

Dimulainya riset dan pengembangan sistem koheren, modulasinya yang dipakai bukan modulasi intensitas melainkan modulasi frekuensi, sehingga sinyal yang sudah lemah intensitasnya masih dapat dideteksi. Maka jarak yang dapat ditempuh, juga kapasitas transmisinya, ikut membesar. Pada tahun 1984 kapasitasnya sudah dapat menyamai kapasitas sistem deteksi langsung. Sayang, generasi ini terhambat perkembangannya karena teknologi piranti sumber dan deteksi modulasi frekuensi masih jauh tertinggal. Tetapi tidak dapat disangkal bahwa sistem koheren ini punya potensi untuk maju pesat pada masa-masa yang akan datang.

Generasi kelima (mulai 1989)

Pada generasi ini dikembangkan suatu penguat optik yang menggantikan fungsi repeater pada generasi-generasi sebelumnya. Sebuah penguat optik terdiri dari sebuah diode laser InGaAsP (panjang gelombang 1,48 mm) dan sejumlah Fiber optik dengan doping erbium (Er) di terasnya. Pada saat Fiber ini disinari diode lasernya, atom-atom erbium di dalamnya akan tereksitasi dan membuat inversi populasi*, sehingga bila ada sinyal lemah masuk penguat dan lewat di dalam Fiber, atom-atom itu akan serentak mengadakan deeksitasi yang disebut emisi terangsang (stimulated emission) Einstein. Akibatnya sinyal yang sudah melemah akan diperkuat kembali oleh emisi ini dan diteruskan keluar penguat. Keunggulan penguat optik ini terhadap repeater adalah tidak terjadinya gangguan terhadap perjalanan sinyal gelombang, sinyal gelombang tidak perlu diubah jadi listrik dulu dan seterusnya seperti yang terjadi pada repeater. Dengan adanya penguat optik ini kapasitas transmisi melonjak hebat sekali. Pada awal pengembangannya hanya dicapai 400 Gb.km/s, tetapi setahun kemudian kapasitas transmisi sudah menembus harga 50 ribu Gb.km/s.

Generasi keenam

Pada tahun 1988 Linn F. Mollenauer memelopori sistem komunikasi soliton. Soliton adalah pulsa gelombang yang terdiri dari banyak komponen panjang gelombang. Komponen-komponennya memiliki panjang gelombang yang berbeda hanya sedikit, dan juga bervariasi dalam intensitasnya. Panjang soliton hanya 10-12 detik dan dapat dibagi menjadi beberapa komponen yang saling berdekatan, sehingga sinyal-sinyal yang berupa soliton merupakan informasi yang terdiri dari beberapa saluran sekaligus (wavelength division multiplexing). Eksperimen menunjukkan bahwa soliton minimal dapat membawa 5 saluran yang masing-masing membawa informasi dengan laju 5 Gb/s. Cacah saluran dapat dibuat menjadi dua kali lipat lebih banyak jika dibunakan multiplexing polarisasi, karena setiap saluran memiliki dua polarisasi yang berbeda. Kapasitas transmisi yang telah diuji mencapai 35 ribu Gb.km/s.

Cara kerja sistem soliton ini adalah efek Kerr, yaitu sinar-sinar yang panjang gelombangnya sama akan merambat dengan laju yang berbeda di dalam suatu bahan jika intensitasnya melebihi suatu harga batas. Efek ini kemudian digunakan untuk menetralisir efek dispersi, sehingga soliton tidak akan melebar pada waktu sampai di receiver. Hal ini sangat menguntungkan karena tingkat kesalahan yang ditimbulkannya amat kecil bahkan dapat diabaikan. Tampak bahwa penggabungan ciri beberapa generasi teknologi Fiber optik akan mampu menghasilkan suatu sistem komunikasi yang mendekati ideal, yaitu yang memiliki kapasitas transmisi yang sebesar-besarnya dengan tingkat kesalahan yang sekecil-kecilnya yang jelas, dunia komunikasi abad 21 mendatang tidak dapat dihindari lagi akan dirajai oleh teknologi Fiber optik.

Kelebihan Fiber Optik

Dalam penggunaan Fiber optik ini, terdapat beberapa keuntungan antara lain[3] :

  1. Lebar jalur besar dan kemampuan dalam membawa banyak data, dapat memuat kapasitas informasi yang sangat besar dengan kecepatan transmisi mencapai gigabit-per detik dan menghantarkan informasi jarak jauh tanpa pengulangan
  2. Biaya pemasangan dan pengoperasian yang rendah serta tingkat keamanan yang lebih tinggi
  3. Ukuran kecil dan ringan, sehingga hemat pemakaian ruang
  4. Imun, kekebalan terhadap gangguan elektromagnetik dan gangguan gelombang radio
  5. Non-Penghantar, tidak ada tenaga listrik dan percikan api
  6. Tidak berkarat

Kabel Fiber Optik

Secara garis besar kabel Fiber optik terdiri dari 2 bagian utama, yaitu cladding dan core [4]. Cladding adalah selubung dari inti (core). Cladding mempunyai indek bias lebih rendah dari pada core akan memantulkan kembali cahaya yang mengarah keluar dari core kembali kedalam core lagi.

http://upload.wikimedia.org/wikipedia/commons/thumb/7/7d/Singlemode_fibre_structure.png/220px-Singlemode_fibre_structure.png

http://bits.wikimedia.org/skins-1.5/common/images/magnify-clip.png

Bagian-bagian Fiber optik jenis single mode

Dalam aplikasinya Fiber optik biasanya diselubungi oleh lapisan resin yang disebut dengan jacket, biasanya berbahan plastik. Lapisan ini dapat menambah kekuatan untuk kabel Fiber optik, walaupun tidak memberikan peningkatan terhadap sifat gelombang pandu optik pada kabel tersebut. Namun lapisan resin ini dapat menyerap cahaya dan mencegah kemungkinan terjadinya kebocoran cahaya yang keluar dari selubung inti. Serta hal ini dapat juga mengurangi cakap silang (cross talk) yang mungkin terjadi[2].


Pembagian Fiber optik dapat dilihat dari 2 macam perbedaan :

1. Berdasarkan mode yang dirambatkan[5] :

  • Single mode : Fiber optik dengan inti (core) yang sangat kecil (biasanya sekitar 8,3 mikron), diameter intinya sangat sempit mendekati panjang gelombang sehingga cahaya yang masuk ke dalamnya tidak terpantul-pantul ke dinding selongsong (cladding). Bahagian inti Fiber optik single-mode terbuat dari bahan kaca silika (SiO2) dengan sejumlah kecil kaca Germania (GeO2) untuk meningkatkan indeks biasnya. Untuk mendapatkan performa yang baik pada kabel ini, biasanya untuk ukuran selongsongnya adalah sekitar 15 kali dari ukuran inti (sekitar 125 mikron). Kabel untuk jenis ini paling mahal, tetapi memiliki pelemahan (kurang dari 0.35dB per kilometer), sehingga memungkin kecepatan yang sangat tinggi dari jarak yang sangat jauh. Standar terbaru untuk kabel ini adalah ITU-T G.652D, dan G.657[6].
  • Multi mode : Fiber optik dengan diameter core yang agak besar yang membuat laser di dalamnya akan terpantul-pantul di dinding cladding yang dapat menyebabkan berkurangnya bandwidth dari Fiber optik jenis ini.

2. Berdasarkan indeks bias core[3] :

  • Step indeks : pada Fiber optik step indeks, core memiliki indeks bias yang homogen.
  • Graded indeks : indeks bias core semakin mendekat ke arah cladding semakin kecil. Jadi pada graded indeks, pusat core memiliki nilai indeks bias yang paling besar. Fiber graded indeks memungkinkan untuk membawa bandwidth yang lebih besar, karena pelebaran pulsa yang terjadi dapat diminimalkan.

http://upload.wikimedia.org/wikipedia/commons/thumb/0/02/Optical_fiber_cable.jpg/200px-Optical_fiber_cable.jpg

http://bits.wikimedia.org/skins-1.5/common/images/magnify-clip.png

Kabel Fiber optik

Pelemahan

Pelemahan (Attenuation) cahaya sangat penting diketahui terutama dalam merancang sistem telekomunikasi Fiber optik itu sendiri. Pelemahan cahaya dalam Fiber optik adalah adanya penurunan rata-rata daya optik pada kabel Fiber optik, biasanya diekspresikan dalam decibel (dB) tanpa tanda negatif. Berikut ini beberapa hal yang menyumbang kepada pelemahan cahaya pada Fiber optik[7]:

  1. Penyerapan (Absorption)
    Kehilangan cahaya yang disebabkan adanya kotoran dalam Fiber optik.
  2. Penyebaran (Scattering)
  3. Kehilangan radiasi (radiative losses)

Reliabilitas dari Fiber optik dapat ditentukan dengan satuan BER (Bit error rate). Salah satu ujung Fiber optik diberi masukan data tertentu dan ujung yang lain mengolah data itu. Dengan intensitas laser yang rendah dan dengan panjang Fiber mencapai beberapa km, maka akan menghasilkan kesalahan. Jumlah kesalahan persatuan waktu tersebut dinamakan BER. Dengan diketahuinya BER maka, Jumlah kesalahan pada Fiber optik yang sama dengan panjang yang berbeda dapat diperkirakan besarnya.

Kode warna pada kabel Fiber optik

Selubung luar

Dalam standarisasinya kode warna dari selubung luar (jacket) kabel Fiber optik jenis Patch Cord adalah sebagai berikut:

Warna selubung luar/jacket

Artinya

Kuning

Fiber optik single-mode

Oren

Fiber optik multi-mode

Aqua

Optimal laser 10 giga 50/125 mikrometer Fiber optik multi-mode

Abu-Abu

Kode warna Fiber optik multi-mode, yang tidak digunakan lagi

Biru

Kadang masih digunakan dalam model perancangan

Konektor

Pada kabel Fiber optik, sambungan ujung terminal atau disebut juga konektor, biasanya memiliki tipe standar seperti berikut:

  1. FC (Fiber Connector): digunakan untuk kabel single mode dengan akurasi yang sangat tinggi dalam menghubungkan kabel dengan transmitter maupun receiver. Konektor ini menggunakan sistem drat ulir dengan posisi yang dapat diatur, sehingga ketika dipasangkan ke perangkat lain, akurasinya tidak akan mudah berubah.
  2. SC (Subsciber Connector): digunakan untuk kabel single mode, dengan sistem dicabut-pasang. Konektor ini tidak terlalu mahal, simpel, dan dapat diatur secara manual serta akurasinya baik bila dipasangkan ke perangkat lain.
  3. ST (Straight Tip): bentuknya seperti bayonet berkunci hampir mirip dengan konektor BNC. Sangat umum digunakan baik untuk kabel multi mode maupun single mode. Sangat mudah digunakan baik dipasang maupun dicabut.
  4. Biconic: Salah satu konektor yang kali pertama muncul dalam komunikasi fiber optik. Saat ini sangat jarang digunakan.
  5. D4: konektor ini hampir mirip dengan FC hanya berbeda ukurannya saja. Perbedaannya sekitar 2 mm pada bagian ferrule-nya.
  6. SMA: konektor ini merupakan pendahulu dari konektor ST yang sama-sama menggunakan penutup dan pelindung. Namun seiring dengan berkembangnya ST konektor, maka konektor ini sudah tidak berkembang lagi penggunaannya.
  7. E200

Selanjutnya jenis-jenis konektor tipe kecil:

  1. LC
  2. SMU
  3. SC-DC

Selain itu pada konektor tersebut biasanya menggunakan warna tertentu dengan maksud sebagai berikut:

Warna Konektor

Arti

Keterangan

Biru

Physical Contact (PC), 0°

yang paling umum digunkan untuk Fiber optik single-mode.

Hijau

Angle Polished (APC), 8°

sudah tidak digunakan lagi untuk Fiber optik multi-mode

Hitam

Physical Contact (PC), 0°


Abu-abu,

Krem

Physical Contact (PC), 0°

Fiber optik multi-mode

Putih

Physical Contact (PC), 0°


Merah


Penggunaan khusus